Электроэнергетика является одной из важнейших отраслей любой страны. Причем ее специфика состоит в том, что произведенная в концентрированном виде и в определенных местах электроэнергия не может запасаться впрок, а должна быть немедленно использована многочисленными потребителями, находящимися на значительном удалении от источника энергии. Эту проблему решают при помощи систем электропередачи (воздушных и кабельных линий высокого, среднего и низкого класса напряжений, распределяющих и преобразующих подстанций напряжением от 0,38 до 1150 кВ). При этом воздушные линии (ВЛ) электропередачи занимают преобладающую долю в общей схеме электроснабжения (ВЛ составляют 90 % от общей протяженности линий электропередачи).
Для надежной работы энергосистемы и обеспечения условий безопасности решающую роль играют электроизоляционные материалы и различные изделия из них (опорные, натяжные и подвесные изоляторы). При этом наиболее распространенными материалами, использующимися в изоляторостроении, являются фарфор и стекло. Кроме того, в последние годы все большее применение в этой области получают новые электроизоляционные материалы на основе полимеров.
Изделия на основе этих традиционных материалов, находящиеся в эксплуатации в течение многих десятилетий, показали их высокую надежность. Вместе с тем возникают проблемы, решение которых возможно только при создании материалов и конструкций из них с новыми электрическими и механическими свойствами. Тем более, что в электроэнергетике все типы изолирующих конструкций одновременно несут значительные механические нагрузки, в некоторых случаях могущие достигать десятки и более тони. Одним из перспективных путей развития энергетического строительства является создание новых доступных материалов, совмещающих, как конструкционные, так и электромеханические свойства. Это позволяет эффективно решать вопросы строительства воздушных линий электропередачи и подстанций за счет отказа от традиционной изоляции, экономии металла, повышения производительности труда при строительстве.
Одним из возможных вариантов решения этой проблемы оказалось повышение электроизоляционных свойств традиционных цементных бетонов. Доступность и распространенность исходного сырья, несложная технология изготовления изделий, высокие механические характеристики в сочетании с достаточными электроизоляционными свойствами — эти положительные качества на протяжении ряда десятилетий привлекают к себе внимание многих исследователей, как в нашей стране (Б.М. Тареев, Н.П. Богородицкий, B.И. Калитвянский, В.С. Дмитревский, Ю.Н. Вершинин, Ю.И. Михельсон, C.А. Назаров, А.В. Корсунцев, А. А. Старосельский, Ю.В. Целебровский, В.А. Чунчин и др.), так и за рубежом (Е. Ламбер, П. Никканен, Т. Робсон, П. Ферье, Е. Хаммонд и др.).
Многочисленные исследования свойств цементных материалов, как правило, направлены на изучение свойств электропроводности твердеющего цемента или цементного камня и бетона во влажном состоянии, а также на создание низковольтного электроизоляционного бетона. Попытки получения высоковольтного электроизоляционного бетона в то время оказались неудачными по ряду причин, одной из которых оказалось то, что предшественникам не удалось создать материал со стабильными диэлектрическими свойствами, сохраняющимися на протяжении всего срока эксплуатации изоляционной конструкции.
Вместе с тем, успехи отечественной науки в области изучения электрофизических процессов и материаловедения позволяют рассмотреть эту проблему на качественно новой основе. Таким образом, имеется проблема, состоящая в отсутствии технического диэлектрика, с помощью которого можно было бы создать новые типы высоковольтных конструкций для электросетевого строительства.
Поэтому исследования в области создания новых видов электроизоляционных материалов, которые одновременно воспринимают значительные механические нагрузки, являются актуальными.
Цель работы. Цель работы заключается в разработке технологии получения высоковольтного цементного диэлектрика — электроизоляционного бетона и изучении электрофизических свойств бетона и изделий на его основе.
Для достижения поставленной цели необходимо решить следующие задачи:
- Исследовать электрофизические свойства как отдельных исходных компонентов, так и затвердевших цементов и бетонов.
- Исследовать влияние различных технологических факторов на электрофизические свойства цементного камня и бетона.
- Разработать технологию изготовления цементного электроизоляционного бетона, армированного различными видами диэлектрической арматуры.
- Исследовать влияние различных способов объемной пропитки на стабилизацию диэлектрических свойств электроизоляционного бетона при воздействии различных климатических факторов и при приложении длительных электрической и механической нагрузок
- Разработать новые виды высоковольтных электросетевых конструкций, изготовить опытно-промышленные партии, провести комплексные испытания в режимах кратковременной и длительной промышленной эксплуатации.
Основные положения, выносимые на защиту: - электрическая прочность цементного камня определяется его структурой и фазовым составом;
- импульсная электрическая прочность кристаллогидратов цементного камня рассчитывается с помощью метода энергетического анализа по энергии кристаллической решетки соединений;
- электропроводность компонентов цементного камня имеет ионный характер и в значительной мере определяется количеством свободной и слабо связанной воды;
- электрическая прочность бетона зависит от наличия в системе наиболее слабого элемента — контактной зоны «цементный камень - заполнитель»;
- получение бетонов с высокими диэлектрическими свойствами возможно путем применения вторичной термической обработки (сушки при повышенных температурах), а стабильность свойств обеспечивается объемной пропиткой бетонов гидрофобными составами, препятствующими проникновению в него влаги;
- армирование изделий из электроизоляционного бетона возможно различными способами с помощью неметаллической арматуры (предварительное напряжение стеклопластиковыми стержнями, дисперсное армирование стеклянными волокнами).